The virtues of self-binding: high sequence specificity for RNA cleavage by self-processed hammerhead ribozymes.
نویسندگان
چکیده
Naturally occurring hammerhead ribozymes are produced by rolling circle replication followed by self-cleavage. This results in monomer-length catalytic RNAs which have self-complementary sequences that can occupy their trans -binding domains and potentially block their ability to cleave other RNA strands. Here we show, using small self-processed ribozymes, that this self-binding does not necessarily inhibit trans -cleavage and can result in greatly elevated discrimination against mismatches. We utilized a designed 63 nt circular DNA to encode the synthesis of a self-processed ribozyme, MDR63. Rolling circle transcription followed by self-processing produced the desired 63 nt ribozyme, which potentially can bind mdr-1 RNA with 9+9 nt of complementarity or bind itself with 4+5 nt of self-complementarity by folding back its ends to form hairpins. Kinetics of trans -cleavage of short complementary and mismatched RNAs were measured under multiple turnover conditions, in comparison to a standard 40 nt ribozyme (MDR40) that lacks the self-complementary ends. The results show that MDR63 cleaves an mdr-1 RNA target with a k (cat)/ K (m)almost the same as MDR40, but with discrimination against mismatches up to 20 times greater. Based on folding predictions, a second self-processed ribozyme (UG63) having a single point mutation was synthesized; this displays even higher specificity (up to 100-fold) against mismatches. The results suggest that self-binding ends may be generally useful for increasing sequence specificity of ribozymes.
منابع مشابه
Measurements of weak interactions between truncated substrates and a hammerhead ribozyme by competitive kinetic analyses: implications for the design of new and efficient ribozymes with high sequence specificity.
Exploitation of ribozymes in a practical setting requires high catalytic activity and strong specificity. The hammerhead ribozyme R32 has considerable potential in this regard since it has very high catalytic activity. In this study, we have examined how R32 recognizes and cleaves a specific substrate, focusing on the mechanism behind the specificity. Comparing rates of cleavage of a substrate ...
متن کاملDesign and preparation of a multimeric self-cleaving hammerhead ribozyme.
The activity of a ribozyme can be impaired by additional sequences at the 5' and 3' termini of the catalytic sequence. To approach this problem, a system was designed that minimizes sequences upstream and downstream from active regions of a hammerhead ribozyme and allows delivery of a large number of active molecules. A self-cleavable multimeric molecule was prepared by placing a ribozyme targe...
متن کاملAlternative tertiary structure attenuates self-cleavage of the ribozyme in the satellite RNA of barley yellow dwarf virus.
A self-cleaving satellite RNA associated with barley yellow dwarf virus (sBYDV) contains a sequence predicted to form a secondary structure similar to catalytic RNA molecules (ribozymes) of the 'hammerhead' class (Miller et al., 1991, Virology 183, 711-720). However, this RNA differs from other naturally occurring hammerheads both in its very slow cleavage rate, and in some aspects of its struc...
متن کاملPeripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity.
Natural hammerhead ribozymes are mostly found in some viroid and viroid-like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis-acting hammerheads self-cleave much faster than trans-acting derivatives and other reported a...
متن کاملEngineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay
Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop-loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2000